D Blavier-l	H Vercucque
-------------	-------------

Données: masses molaires atomiques:

$$M(H)=1 g.mol^{-1}$$
 $M(C)=12 g.mol^{-1}$ $M(O)=16 g.mol^{-1}$ $M(Zn)=65g.mol^{-1}$

$$M(Na)=23 \text{ g.mol}^{-1}$$
 $M(Cl)=35 \text{ g.mol}^{-1}$ $M(S)=32 \text{ g.mol}^{-1}$ $M(Fe)=56 \text{ g.mol}^{-1}$

$$M(Cu)=63g.mol^{-1}$$
 $M(Mg)=24g.mol^{-1}$ $M(Ag)=108.mol^{-1}$

Calculer les quantités de matière des échantillons suivants :

150 g de sodium Na	63 g de cuivre Cu
500 g de glucose C ₆ H ₁₂ O ₆	100 g de sel de cuisine NaCl
160 g de sulfure de zinc ZnS	125 mg de soude NaOH
25 g d'oxyde d'argent Ag ₂ O	200 g d'hydroxyde de magnésium Mg(HO) ₂
650 g d'oxyde de fer Fe ₂ O ₃	65 g de chlorure de fer III FeCl ₃
68 g de carbone C	800 g d'argent Ag

Corrections

Il faut utiliser la relation $n(X) = \frac{m(X)}{M(X)}$ avec les unités adaptées, à savoir m(X) en g. Parfois, lorsque le composé est moléculaire, il faut déterminer la masse molaire moléculaire (voir fiche d'autoévaluation précédente)

$n(Na) = \frac{m(Na)}{M(Na)} = \frac{150}{23} = 6,5 \text{ mol}$	n(Cu) 1 mol
$n(C_6H_{12}O_6) = \frac{m(C_6H_{12}O_6)}{M(C_6H_{12}O_6)} = \frac{500}{180} = 2,8 \text{ mol}$	n(NaCl) = 1,5 mol
$n(ZnS) = \frac{m(ZnS)}{M(ZnS)} = \frac{160}{97} = 1,6 \text{ mol}$	n(NaOH) = 0,003 mol (attention aux unités)
$n(Ag_2O) = \frac{m(Ag_2O)}{M(Ag_2O)} = \frac{25}{232} = 0,1 \text{ mol}$	n(Mg(HO) ₂) = 3,4 mol
$n(Fe_2O_3) = \frac{m(Fe_2O_3)}{M(Fe_2O_3)} = \frac{650}{160} = 4,1 \text{ mol}$	n(FeCl ₃) = 0,4 mol
$n(C) = \frac{m(C)}{M(C)} = \frac{68}{12} = 5,7 \text{ mol}$	n(Ag) = 7,4 mol